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SYNOPSIS

The purpose of these lectures is to offer an overview of Stochastic
Portfolio Theory, a rich and flexible framework introduced by
E.R. Fernholz (2002) for analyzing portfolio behavior and equity
market structure.

This theory is descriptive as opposed to normative, is consistent
with observable characteristics of actual markets and portfolios,
and provides a theoretical tool which is useful for practical
applications.
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As a theoretical tool, this framework provides fresh insights into
questions of market structure and arbitrage, and can be used to
construct portfolios with controlled behavior. Most importantly, it
does this in a model-free, robust and pathwise manner, whose end
results eschew stochastic integration.

As a practical tool, Stochastic Portfolio Theory has been applied to
the analysis and optimization of portfolio performance, and has
been the theoretical underpinning of successful investment
strategies for close to 30 years.
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More importantly, SPT explains under what conditions it becomes
possible to outperform a capitalization-weighted benchmark
index – and then, exactly how to do this by means of simple
investment rules.

These typically take the form of adjusting systematically the
capitalization weights of an index portfolio to more efficient
combinations.

They do it by exploiting the natural volatilities of stock prices,
and need no forecasts of mean rates of return (which are
notoriously harder to estimate).
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1. THE FRAMEWORK

Equity market framework (Bachelier, Samuelson...)

dB(t) = B(t)r(t) dt, B(0) = 1, (1)

dXi (t) = Xi (t)

(
bi (t)dt +

N∑
ν=1

σiν(t) dWν(t)

)
, i = 1, . . . , n.

Money-market B(·) , and n stocks with strictly positive
capitalizations X1(·), · · · ,Xn(·).

Driven by the Brownian motion W (·) = (W1(·), · · · , WN(·))′

with N ≥ n. Probability space (Ω,F ,P) .

All processes are assumed to be measurable, and adapted to a
filtration F = {F(t)}0≤t<∞ which represents the “flow of
information” in the market. Not much needs to be assumed at this
point about it... .
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We shall take r(·) ≡ 0 until further notice: investing in the
money-market will amount to hoarding, whereas borrowing from
the money-market will incur no interest.

Arithmetic Mean Rates of Return b(·) = (b1(·), . . . , bn(·))′ and
Variation Rates (αii (·))1≤i≤n satisfy for every T ∈ (0,∞)
the integrability condition

n∑
i=1

∫ T

0

(∣∣bi (t)
∣∣+ αii (t)

)
dt <∞ , a.s.

Here σ(·) = (σij(·))1≤i≤n, 1≤j≤N is the (n × N)−matrix of local
volatility rates, and α(·) = σ(·)σ′(·) is the (n × n)−matrix of
Variation/Covariation rates

αij(t) :=
N∑
ν=1

σiν(t)σjν(t) =
1

Xi (t)Xj(t)
· d

dt
〈Xi ,Xj〉(t) .
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2. STRATEGIES and PORTFOLIOS

A small investor (whose actions cannot affect market prices)
decides, at each time t and for every 1 ≤ i ≤ n, which proportion
πi (t) of his current wealth V (t) to invest in the i th stock.

We require that each πi (t) be F(t)−measurable. The proportion
1−

∑n
i=1 πi (t) gets invested in the money market.

The wealth V (·) ≡ V v ,π(·) corresponding to an initial capital
v ∈ (0,∞) and a portfolio π(·) =

(
π1(·), · · · , πn(·)

)′
satisfies

V (0) = v and the Markowitz equation

dV (t)

V (t)
=

n∑
i=1

πi (t)
dXi (t)

Xi (t)
+

(
1−

n∑
i=1

πi (t)

)
dB(t)

B(t)
.

To wit: The portfolio’s arithmetic return is the “weighted
average”, according to its weights π1(t), · · · , πn(t), of the
individual assets’ arithmetic returns.
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Equivalently,

dV (t)

V (t)
= bπ(t)dt +

N∑
ν=1

σπν (t) dWν(t)

where

bπ(t) :=
n∑

i=1

πi (t)bi (t) , σπν (t) :=
n∑

i=1

πi (t)σiν(t) ,

are, respectively, the portfolio’s arithmetic rate-of-return, and the
portfolio’s volatilities.

• Let us introduce also the portfolio’s variation

aππ(t) :=
(
σπ(t)

)′
σπ(t) =

N∑
ν=1

(σπν (t))2 =
n∑

i=1

n∑
j=1

πi (t)αij(t)πj(t) .
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FORMAL DEFINITION:

• We shall call portfolio an F−progressively measurable process
π : [0,∞)× Ω→ Rn which satisfies, for each T ∈ (0,∞) , the
integrability condition∫ T

0

( ∣∣bπ(t)
∣∣+ aππ(t)

)
dt < ∞ , a.s.

The collection of all portfolios will be denoted by Π .

• The wealth process corresponding to a portfolio π(·) ∈ Π and
an initial capital v > 0 is strictly positive:

V v ,π(t) = v exp

{ ∫ t

0
γπ(s) ds +

∫ t

0

(
σπ(s)

)′
dW (s)

}
> 0 .

Here the portfolio’s “instantaneous growth rate” is given as

γπ(t) := bπ(t)− 1

2
aππ(t).

(You cannot go broke if you invest reasonable proportions of your wealth
across assets. Here, “reasonable” reflects the integrability condition.)
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• The portfolio κ(·) ≡ 0 with κ1(·) ≡ · · · ≡ κn(·) ≡ 0
never invests in the stock market (keeps all wealth in cash:
V v ,κ(·) ≡ v , κ0(·) ≡ 1).

• A portfolio π(·) ∈ Π with

n∑
i=1

πi (t) = 1 , ∀ 0 ≤ t <∞

almost surely, will be called stock portfolio.

A stock portfolio never invests in the money market, and never
borrows from it.

. The collection of all stock portfolios will be denoted by by P .
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. We shall say that a portfolio π(·) is bounded, if ‖π(t, ω)‖ ≤ Kπ
holds for all (t, ω) ∈ [0,∞)× Ω and some real constant Kπ > 0 .

. We shall call a portfolio π(·) ∈ Π long-only, if it satisfies almost
surely

π1(t) ≥ 0 , · · · , πn(t) ≥ 0 ,
n∑

i=1

πi (t) ≤ 1 , ∀ 0 ≤ t <∞ .

Every long-only portfolio is also bounded.
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3. THE MARKET PORTFOLIO

Consider now the market portfolio µ(·) =
(
µ1(·), · · · , µn(·)

)′
given by

µi (t) :=
Xi (t)

X (t)
, i = 1, . . . , n ,

where
X (t) := X1(t) + . . .+ Xn(t) .

This invests in all stocks in proportion to their relative capitaliza-
tion weights. Accomplishes this by buying a fixed number of shares
in each stock at time t = 0 – the same for all stocks – and holding
on to these shares afterwards (the ultimate “buy and hold”
strategy). Corresponds to the S&P 500 index.

Such an investment amounts to “owning the entire market”:
the wealth process becomes

V v ,µ(·) = v X (·)/X (0) .
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4. RELATIVE ARBITRAGE

Given a real number T > 0 and any two portfolios π(·) ∈ Π and
%(·) ∈ Π , we shall say that π(·) is a relative arbitrage with respect
to %(·) over [0,T ], if we have

P
(
V 1,π(T ) ≥ V 1,%(T )

)
= 1 and P

(
V 1,π(T ) > V 1,%(T )

)
> 0 .

z Strong relative arbitrage: P
(
V 1,π(T ) > V 1,%(T )

)
= 1 .

A different terminology one can use here, is to say that π(·)
outperforms, or dominates, %(·) . The classical paper of Merton (1973)

actually introduces this latter terminology in an abstract setting, but

does not give examples. More on this presently... .
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• With %(·) ≡ κ(·) ≡ 0 , this definition becomes the standard
definition of arbitrage relative to cash.

• Simple Exercise: No relative arbitrage is possible with respect
to a portfolio %∗(·) ∈ Π that has the so-called “supermartingale
numéraire property”:

V 1,π(·) /V 1,%∗(·) is a supermartingale, for every π(·) ∈ Π.

In fact, it suffices that this property hold under some equivalent
probability measure.
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4.a: Market Price of Risk (Optional)

Suppose for a moment that there exists a market price of risk (or
“relative risk”) ϑ : [0,∞)×Ω→ RN : an F−adapted process that
satisfies for each T ∈ (0,∞) the requirements

σ(t)ϑ(t) = b(t) , ∀ 0 ≤ t ≤ T and

∫ T

0
‖ϑ(t)‖2 dt <∞ .

• Whenever it exists, such a process ϑ(·) allows us to introduce
a corresponding “deflator” Zϑ(·) . This is an exponential local
martingale and supermartingale

Zϑ(t) := exp

{
−
∫ t

0
ϑ′(s) dW (s)− 1

2

∫ t

0
‖ϑ(s)‖2 ds

}
, 0 ≤ t <∞ .

A martingale, if and only if E
(
Zϑ(T )

)
= 1 , ∀ T ∈ (0,∞).

• It has the property that Zϑ(·)V v ,π(·) is also a local martingale
(and supermartingale), for every π(·) ∈ Π , v > 0.
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In the presence of a market-price-of-risk process ϑ(·) we have also

dV v ,π(t)

V v ,π(t)
= π′(t)σ(t)

[
dW (t) + ϑ(t)dt

]
.

Let us pair this with the equation

dZϑ(t) = −Zϑ(t)ϑ′(t)dW (t)

for the corresponding deflator Zϑ(·) we introduced in the last slide

Zϑ(·) = exp

{
−
∫ ·

0
ϑ′(t) dW (t)− 1

2

∫ ·
0
‖ϑ(t)‖2 dt

}
. Simple stochastic calculus shows that the “deflated wealth
process” Zϑ(·)V v ,π(·) is also a positive local martingale and a
supermartingale for every π(·) ∈ Π , v > 0, namely

Zϑ(t)V v ,π(t) = v+

∫ t

0
Zϑ(s)V v ,π(s)

(
σ′(s)π(s)− ϑ(s)

)′
dW (s) .
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4.b: Strict Local Martingales (Optional)

The existence of such a deflator proscribes scalable (or egregious,
or immediate, or of the first kind) arbitrage opportunities, a.k.a.
UP’s BR (Unbounded Profits with Bounded Risk).

• For our purposes, it will be very important to allow Zϑ(·) to be
a strict local martingale; i.e., not to exclude the possibility

E
(
Zϑ(T )

)
< 1

for some horizons T ∈ (0,∞).
This means, we still keep the door open to the existence of
relative arbitrage opportunities that cannot be scaled (in a
somewhat colloquial manner, the existence of some
Small Profits with Bounded Risk).

21 / 116



• Suppose that the covariation matrix-valued process α(·)
satisfies, for some L ∈ (0,∞) , the a.s. boundedness condition

ξ′α(t)ξ = ξ′σ(t)σ′(t)ξ ≤ L‖ξ‖2, ∀ t ∈ [0,∞) , ξ ∈ Rn . (2)

If π(·) is arbitrage relative to ρ(·) and both are bounded portfo-
lios, then Zϑ(·) and Zϑ(·)V v ,ρ(·) are strict local martingales:

E
[
Zϑ(T )

]
< 1 , E [Zϑ(T )V v ,ρ(T ) ] < v .

NO EMM CAN THEN EXIST !

• In particular, if there exists a bounded portfolio π(·) which is
arbitrage relative to µ(·) , we have

E
[
Zϑ(T )

]
< 1, E [Zϑ(T )X (T ) ] < X (0), E [Zϑ(T )Xi (T ) ] < Xi (0) .

Relative arbitrage becomes then a “machine” for generating strict
local martingales.
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5. REMARKS and PREVIEW (Optional)

• Suppose there exists a real constant h > 0 for which we have

n∑
i=1

µi (t)αii (t)−
n∑

i=1

n∑
i=1

µi (t)αij(t)µj(t) ≥ h , ∀ 0 ≤ t <∞ .

(3)

. Under this condition we shall see that, for a sufficiently large real
constant c = c(T ) > 0 , the long-only modified entropic portfolio

E
(c)
i (t) =

µi (t)
(
c − logµi (t)

)∑n
j=1 µj(t)

(
c − logµj(t)

) , i = 1, · · · , n

(4)
is strong relative arbitrage with respect to the market portfolio
µ(·) over any given time-horizon [0,T ] with

T > (2 log n)/h .
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• It was an open question for 10 years, whether such relative
arbitrage can be constructed over arbitrary time-horizons, under

n∑
i=1

µi (t)αii (t)−
n∑

i=1

n∑
i=1

µi (t)αij(t)µj(t) ≥ h , ∀ 0 ≤ t <∞ ,

the condition of (3).

This question has now been settled – and the answer is negative.
But with some very interesting twists and turns (to come).
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• • Another condition guaranteeing the existence of relative
arbitrage with respect to the market is, as we shall see, that there
exist a real constant h > 0 with

(
µ1(t) · · ·µn(t)

)1/n

 n∑
i=1

αii (t)− 1

n

n∑
i=1

n∑
j=1

αij(t)

 ≥ h , ∀ t ≥ 0 .

(5)

Then with m(t) := (µ1(t) · · ·µn(t))1/n and for c = c(T ) > 0
large enough, the long-only modified equally-weighted portfolio

ϕ
(c)
i (t) =

c

c + m(t)
· 1

n
+

m(t)

c + m(t)
· µi (t) , i = 1, · · · , n ,

(6)
a convex combination of equal-weighting and the market,
is strong arbitrage relative to the market portfolio µ(·), over
any given time horizon [0,T ] with

T > (2 n1−(1/n))/h .
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• • • Consider now the a.s. strong non-degeneracy condition

ξ′α(t)ξ = ξ′σ(t)σ′(t)ξ ≥ ε‖ξ‖2, ∀ t ∈ [0,∞) , ξ ∈ Rn (7)

for some real number ε > 0 , on the covariation process α(·) .
(Compared to the condition (3), this requirement is quite severe.)

. Suppose that the condition (7) holds; and that (2) and (3),
namely

ξ′α(t)ξ = ξ′σ(t)σ′(t)ξ ≤ L‖ξ‖2, ∀ t ∈ [0,∞) , ξ ∈ Rn ,

n∑
i=1

µi (t)αii (t)−
n∑

i=1

n∑
i=1

µi (t)αij(t)µj(t) ≥ h , ∀ 0 ≤ t <∞ ,

hold as well.

In the presence of the first two requirements, the third amounts

to a “diversity” condition; more on this in a moment.
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Then, as we shall see, for any given constant p ∈ (0, 1) , the
long-only diversity-weighted portfolio

D
(p)
i (t) =

(µi (t))p∑n
j=1(µj(t))p

, i = 1, · · · , n (8)

is again a strong relative arbitrage with respect to the market
portfolio, over sufficiently long time-horizons.

• Appropriate modifications of this diversity-weighted
portfolio do yield such relative arbitrage over any
time-horizon [0,T ].
This takes some work to prove. And the shorter the time-horizon,
the bigger the amount of initial capital that is required to achieve
the extra basis point’s worth of outperformance:

v ≥ v(T ) ≡ q(T )

(µ1(0))q(T )
−1 , q(T ) := 1+

(
2/ε δ T

)
log
(
1/µ1(0)

)
.
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• Please note that these long-only stock portfolios (entropic,
equally-weighted, modified equally-weighted, diversity-weighted)
are determined entirely from the market weights µ1(t), · · · , µn(t) .

These market weights are perfectly easy to observe and to
measure.

• Construction of these portfolios does not assume any knowledge
about the exact structure of market parameters, such as the mean
rates of return bi (·)’s, or the local covariation rates αij(·)’s.

To put it a bit more colloquially: does not require us to take these
particular features of the model “too seriously”. Only as a general
“framework”... so that we are able to formulate notions such as
the covariations and growth rates for various assets. Forthcoming.

. In the parlance of finance practice: these portfolios are
completely “passive” (their construction requires neither
estimation nor optimization).
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6. GROWTH RATES

• An equivalent way of representing the positive Itô process
Xi (·) of equation (1), namely,

dXi (t) = Xi (t)

(
bi (t) dt +

N∑
ν=1

σiν(t) dWν(t)

)
, i = 1, . . . , n ,

is in the form

Xi (t) = Xi (0) exp

{ ∫ t

0
γi (s) ds +

∫ t

0

N∑
ν=1

σiν(s) dWν(s)

}
> 0 ,

d
(

logXi (t)
)

= γi (t) dt +
N∑
ν=1

σiν(t) dWν(t)︸ ︷︷ ︸ ,
with the logarithmic mean rate of return for the i th stock

γi (t) := bi (t)− 1

2
αii (t) .
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EXAMPLE
Stock XYZ doubles in good years (+100%) and halves in bad years
(-50%). Years good and bad alternate independently and equally
likely (to wit, with probability 0.50), thus

b =
1

2
(+100%) +

1

2
(−50%) =

1

2
− 1

4
= 0.25 ,

γ =
1

2
(log 2) +

1

2

(
log

1

2

)
= 0 .

On the other hand, log 2 ' 0.7 , so the variance is

α = σ2 =
1

2
(0.7)2 +

1

2
(−0.7)2 ' 0.50 ,

and indeed

(0.25) = 0 + (1/2)(0.50) or b = γ + (1/2)α .
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• This logarithmic rate of return can be interpreted also as a
growth-rate, in the sense that

lim
T→∞

1

T

(
logXi (t)−

∫ T

0
γi (t)dt

)
= 0 a.s.

holds, under the assumption αii (·) ≤ L <∞ on the variation of
the stock; recall

γi (t) := bi (t)− 1

2
αii (t) .

A bit more generally, under the condition

lim
T→∞

(
log logT

T 2

∫ T

0
αii (t)dt

)
= 0 , a.s.
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• Similarly, the solution of the linear equation

dV (t)

V (t)
=

n∑
i=1

πi (t)
dXi (t)

Xi (t)
+

(
1−

n∑
i=1

πi (t)

)
dB(t)

B(t)

= π′(t)
[
b(t)dt + σ(t)dW (t)

]
for the wealth V (·) ≡ V v ,π(·) corresponding to an initial capital
v ∈ (0,∞) and portfolio π(·) = (π1(·), · · · , πn(·))′ , is given as

V v ,π(t) = v exp

{ ∫ t

0
γπ(s) ds +

∫ t

0

(
σπ(s)

)′
dW (s)

}
> 0 ,

or equivalently

d
(

logV v ,π(t)
)

= γπ(t) dt +
N∑
ν=1

σπν (t) dWν(t) . (9)
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Stock Portfolio growth-rate and volatilities

γπ(t) =
n∑

i=1

πi (t)γi (t) + γπ∗ (t) , σπν (t) =
n∑

i=1

πi (t)σiν(t).

Stock Portfolio excess growth-rate

γπ∗ (t) :=
1

2

 n∑
i=1

πi (t)αii (t)−
n∑

i=1

n∑
j=1

πi (t)αij(t)πj(t)


︸ ︷︷ ︸

.

Stock Portfolio variation

aππ(t) =
N∑
ν=1

(σπν (t))2 =
n∑

i=1

n∑
j=1

πi (t)αij(t)πj(t) .
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7. RELATIVE COVARIATION STRUCTURE
• Variation/Covariation Processes, not in absolute terms, but
relative to the stock portfolio π(·):

Aπij(t) :=
N∑
ν=1

(
σiν(t)− σπν (t)

)
(σjν(t)− σπν (t)) , 1 ≤ i , j ≤ n

where σπν (t) =
∑n

i=1 πi (t)σiν(t). If the covariation matrix α(t)
with entries

α ij(t) =
N∑
ν=1

σiν(t)σjν(t) , 1 ≤ i , j ≤ n

is positive-definite, then the relative covariation matrix

Aπ(t) = {Aπij(t)} 1≤i , j≤n

has rank n − 1 and its null space is spanned by the vector π(t) .
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• The excess growth-rate

γπ∗ (t) :=
1

2

 n∑
i=1

πi (t)αii (t)−
n∑

i=1

n∑
j=1

πi (t)αij(t)πj(t)


has, for any two stock portfolios π(·) ∈ P , ρ(·) ∈ P , the
invariance property

γπ∗ (t) = 1
2

 n∑
i=1

πi (t)Aρii (t)−
n∑

i=1

n∑
j=1

πi (t)Aρij(t)πj(t)

 .

Consequently, reading the above with ρ(·) ≡ π(·) and
recalling that the null space of the relative covariation matrix
{Aπij(t)}1≤i ,j≤n is spanned by π(t), we obtain

γπ∗ (t) =
1

2

n∑
i=1

πi (t)Aπii (t) .

In particular, we have γπ∗ (·) ≥ 0 for a long-only stock portfolio.
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• Now let us consider the market portfolio π ≡ µ . The excess
growth rate

γµ∗ (t) =
1

2

( n∑
i=1

µi (t)αii (t)−
n∑

i=1

n∑
i=1

µi (t)αij(t)µj(t)
)

of the market portfolio can then be interpreted as a measure of
intrinsic variation available in the market:

γµ∗ (t) =
1

2

n∑
i=1

µi (t)Aµii (t) ,

where

µi (t) :=
Xi (t)

X (t)
, σµν (t) :=

n∑
i=1

µi (t)σiν(t) ,

Aµij (t) :=
N∑
ν=1

(
σiν(t)− σµν (t)

)
(σjν(t)− σµν (t)) =

d〈µi , µj〉(t)

µi (t)µj(t)dt
.
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Thus the excess growth rate of the market portfolio

γµ∗ (t) =
1

2

n∑
i=1

µi (t)Aµii (t)

is also a weighted average, according to market capitalization, of
the local variation rates

Aµii (t) =
d

dt
〈logµi 〉(t)

of individual stocks – not in absolute terms, but relative to the
market.

This quantity will be very important in what follows.
It is a much more meaningful measure of “market volatility”

than some commonly used as such, in my opinion.
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• (OPTIONAL) Related to the dynamics of the log-market-weights

d logµi (t) =
(
γi (t)− γµ(t)

)
dt +

N∑
ν=1

(
σiν(t)− σµν (t)

)
dWν(t)

for all stocks i = 1, . . . , n . Equivalently, in arithmetic terms

dµi (t)

µi (t)
=
(
γi (t)− γµ(t) +

1

2
Aµii (t)

)
dt

+
N∑
ν=1

(
σiν(t)− σµν (t)

)
dWν(t) . (10)

It is now clear from this, that

d〈µi , µj〉(t)

µi (t)µj(t)dt
=

N∑
ν=1

(
σiν(t)− σµν (t)

)
(σjν(t)− σµν (t))

=
d

dt
〈logµi , logµj〉(t) = Aµij (t) .
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THE PARABLE OF TWO STOCKS

Suppose there are only two, perfectly negatively correlated, stocks
A and B. We toss a fair coin, independently from day to day; when
the toss comes up heads, stock A doubles and stock B halves in
price (and vice-versa, if the toss comes up tails).

Clearly, each stock has a growth rate of zero: holding any one of
them produces nothing in the long term.

• What happens if we hold both stocks? Suppose we invest $100
in each; one of them will rise to $200 and the other fall to $50, for
a guaranteed total of $250, representing a net gain of 25%; the
winner has gained more than the loser has lost.

If we rebalance to $125 in each stock (so as to maintain the equal
proportions we started with), and keep doing this day after day, we
lock in a long-term growth rate of 25%.
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Indeed, taking n = 2 and

γ1 = γ2 = 0 , α11 = α22 = −α12 = −α21 = 0.50

from our earlier computations, and

π1 = π2 = 0.50

in

γπ =
n∑

i=1

πi γi +
1

2

 n∑
i=1

πi αii −
n∑

i=1

n∑
j=1

πi αij πj


=

1

2

(
π1

(
1− π1

)
α11 + π2

(
1− π2

)
α22

)
− π1π2α12

we get the same growth rate that we computed a moment ago:

γπ = γπ∗ = 0.25 .
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A POSSIBLE MORAL OF THIS PARABLE

• In the presence of “sufficient intrinsic variation (volatility)”,
setting target weights and rebalancing to them, can capture
this volatility and turn it into growth.

(And this can occur even if carried out relatively naively, without
precise estimates of model parameters and without refined
optimization.)

We have encountered several variations on this parable already,
and will encounter a few more below. In particular, we shall
quantify what “sufficient intrinsic volatility” means.
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8. PORTFOLIO DIVERSIFICATION AND MARKET
VOLATILITY AS DRIVERS OF GROWTH

Now let us suppose that, for some real number ε > 0 , condition
(7) holds:

ξ′α(t)ξ = ξ′σ(t)σ′(t)ξ ≥ ε‖ξ‖2, ∀ t ∈ [0,∞) , ξ ∈ Rn .

That is, we have a strictly nondegenerate covariation structure.
Then an elementary computation shows

γπ(t)−
n∑

i=1

πi (t)γi (t) = γπ∗ (t) ≥
(
ε/2
)(

1− max
1≤i≤n

πi (t)
)
≥
(
ε/2
)
η > 0 ,

as long as for some η ∈ (0, 1) we have

max
1≤i≤n

πi (t) ≤ 1− η .
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To wit, such a stock portfolio’s growth rate γπ(t) will dominate,
and strictly, the average growth rate of the constituent assets

n∑
i=1

πi (t) γi (t)

(Fernholz & Shay, Journal of Finance (1982)):

γπ(t) ≥
n∑

i=1

πi (t)γi (t) +
(
ε/2
)
η .

In words: Under the above condition of “sufficient volatility”, even
the slightest bit of portfolio diversification can not only decrease
the portfolio’s variation, as is well known, but also enhance its
growth.

We shall see below additional – and actually quite more realistic –
incarnations of this principle.
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¶ To see just how significant such an enhancement can be,
consider any fixed-proportion, long-only stock portfolio π(·) ≡ p ,
for some vector p ∈ ∆n with

1− max
1≤i≤n

pi =: η > 0 ,

and with

∆n :=
{

(p1, · · · , pn) : p1 ≥ 0, · · · , pn ≥ 0 , p1 + · · ·+ pn = 1
}
.

For any stock portfolio π(·) and T ∈ (0,∞) , we have the identity

log

(
V 1,π(T )

V 1,µ(T )

)
=

∫ T

0
γπ∗ (t) dt +

n∑
i=1

∫ T

0
πi (t) d logµi (t).

(11)
At least in principle, a way to keep track of the performance of π(·)
relative to the market. This is a simple consequence of (9), slide 30:

d
(

logV v ,π(t)
)

= γπ(t)dt +
N∑
ν=1

σπν (t)dWν(t).
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From the equation

log

(
V 1,π(T )

V 1,µ(T )

)
=

∫ T

0
γπ∗ (t)dt +

n∑
i=1

∫ T

0
πi (t)d logµi (t) ,

of the previous slide, we get for a constant-proportion stock
portfolio the a.s. comparisons

1

T
log

(
V 1,p(T )

V 1,µ(T )

)
−

n∑
i=1

pi
T

log

(
µi (T )

µi (0)

)
=

=
1

T

∫ T

0
γp∗(t)dt ≥ εη

2
> 0 .
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Suppose now that the market is coherent, meaning that no
individual stock crashes relative to the rest of the market:

lim
T→∞

1

T
logµi (T ) = 0 , ∀ i = 1, · · · , n .

Then passing to the limit as T →∞ in

1

T
log

(
V 1,p(T )

V 1,µ(T )

)
−

n∑
i=1

pi
T

log

(
µi (T )

µi (0)

)
≥ εη

2
> 0

we see that the wealth corresponding to any such fixed-proportion,
long-only portfolio, grows exponentially at a rate strictly higher
than that of the overall market:

lim inf
T→∞

1

T
log

(
V 1,p(T )

V 1,µ(T )

)
≥ εη

2
> 0 , a.s.
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Remark: Optional.

Tom Cover’s (1991) “universal portfolio”

Πi (t) :=

∫
∆n pi V

1,p(t) dp∫
∆n V 1,p(t) dp

, i = 1, · · · , n

has value

V 1,Π(t) =

∫
∆n V 1,p(t) dp∫

∆n dp
∼ max

p∈∆n
V 1,p(t) .

Please note the “total agnosticism” of this portfolio regarding the details

of the underlying model; and check out the recent work of Cuchiero,

Schachermayer & Wong (2017) regarding this portfolio.

z Up to now we have not even tried to select portfolios in an
“optimal” fashion. Here a few Portfolio Optimization problems;
some of them are classical, while for others very little is known.
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9. PORTFOLIO OPTIMIZATION

Problem #1: Quadratic criterion, linear constraint
(Markowitz, 1952). Minimize the portfolio variation

aππ(t) =
n∑

i=1

n∑
j=1

πi (t)αij(t)πj(t) (12)

among all stock portfolios π(·) ∈ P that keep the rate-of-return
at least equal to a given constant:

bπ(t) =
n∑

i=1

πi (t)bi (t) ≥ β .

Problem #2: Quadratic criterion, quadratic constraint.
Minimize the portfolio variation aππ(t) of (12) among all stock
portfolios π(·) ∈ P with growth-rate at least equal to a given
constant γ0 :

n∑
i=1

πi (t)bi (t) ≥ γ0 + 1
2

n∑
i=1

n∑
j=1

πi (t)αij(t)πj(t) .
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Problem #3: Maximize over stock portfolios the probability of
reaching a given “ceiling” c before reaching a given “floor” f ,
with 0 < f < 1 < c <∞ .

More specifically, maximize over π(·) ∈ P the probability

P [Tπc < Tπf ] , with Tπc := inf{ t ≥ 0 : X 1,π(t) = c } .

. In the case of constant coëfficients γi and αij , and with

Γn the collection of vectors p ∈ Rn with p1 + · · ·+ pn = 1 ,

the solution to this problem is given by the vector π ∈ Γn that
maximizes the mean-variance, or signal-to-noise, ratio:

γπ

aππ
=

∑n
i=1 πi (γi + 1

2αii )∑n
i=1

∑n
j=1 πiαijπj

− 1
2

(Pestien & Sudderth, Mathematics of Operations Research
1985). Open Question: How about (more) general coëfficients?
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Problem #4: Maximize over stock portfolios the probability

P [Tπc < T ∧ Tπf ]

of reaching a given “ceiling” c before reaching a given “floor”
f with 0 < f < 1 < c <∞ , by a given “deadline” T ∈ (0,∞).

Always with constant coëfficients, suppose there is a vector
p̂ = (p̂1, . . . , p̂n)′ ∈ Γn that maximizes both the signal-to-noise
ratio and the variance,

γp

app
=

∑n
i=1 pi (γi + 1

2αii )∑n
i=1

∑n
j=1 pi αij pj

− 1

2
and app =

n∑
i=1

n∑
j=1

pi αij pj ,

over all p = (p1, · · · , pn)′ ∈ Rn with
∑n

i=1 pi = 1 .
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Then the constant-proportion portfolio p̂ is optimal for the above
criterion (Sudderth & Weerasinghe, Mathematics of
Operations Research, 1989).

This is a huge assumption; it is satisfied, for instance, under the
(very stringent) condition that, for some β ≤ 0 , we have

bi = γi + 1
2 αii = β , for all i = 1, . . . , n .

Open Question: As far as I can tell, nobody seems to know the
solution to this problem when such “simultaneous maximization” is
not possible.
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Problem #5: Minimize over stock portfolios π(·) the expected
time E [Tπc ] until a given “ceiling” c ∈ (1,∞) is reached.

Again with constant coëfficients, it turns out that it is enough to
maximize, over all vectors π ∈ Rn with

∑n
i=1 πi = 1 , the drift in

the equation for logXπ(·), namely the portfolio growth-rate

γπ =
n∑

i=1

πi
(
γi + 1

2αii

)
− 1

2

n∑
i=1

n∑
j=1

πiαijπj .

(See Heath, Orey, Pestien & Sudderth, SIAM Journal on
Control & Optimization, 1987.)

Again, how about (more) general coëfficients?
Partial answer: Kardaras & Platen, SIAM Journal on Control
& Optimization (2010).
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Problem #6: Growth Optimality, Relative Log-Optimality,
and the Supermartingale Numéraire Property:

Suppose we can find a portfolio %∗(·) ∈ Π which maximizes, over
vectors p ∈ Rn , the drift in the equation for logXπ(·), namely the
growth-rate

n∑
i=1

pi
(
γi (t) + 1

2αii (t)
)
− 1

2

n∑
i=1

n∑
j=1

pi αij(t) pj

(just as we ended up doing in the previous problem). Then for
every portfolio π(·) ∈ Π we have the supermartingale numéraire
property

V 1,π(·) /V 1,%∗(·) is a supermartingale,

as well as

lim sup
T→∞

1

T
log

(
V 1,π(T )

V 1,%∗(T )

)
≤ 0 , a.s.,

E
[

log

(
V 1,π(T )

V 1,%∗(T )

)]
≤ 1 , ∀ T ∈ (0,∞) .
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• As Constantinos Kardaras showed in his dissertation, the
solvability of very general hedging / utility maximization problems
only needs the existence of a portfolio %∗(·) with the
supermartingale numéraire property
(equivalently, the growth-optimality property;
equivalently, the relative-log-optimality property;
equivalently, the existence of a supermartingale numéraire).

In fact, the entire mathematical theory of Finance can be re-cast,
and generalized, in terms of the existence of this portfolio %∗(·)
with the supermartingale numéraire property
(rather than requiring the existence of an EMM – TOO MUCH!).

Subject of Book in Preparation, with Kostas.
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• Now then, every portfolio %∗(·) with

β(·) = α(·) %∗(·)

has all the above properties; leads to a market-price-of-risk

ϑ(·) = σ′(·) %∗(·)

and thence to a deflator Zϑ(·) ; and its wealth process V %∗(·) is
uniquely determined.

The market is then “viable”, in the sense that it becomes impossible to
finance something (a non-negative contingent claim which is strictly
positive with positive probability) for next to nothing (i.e., starting with
initial capital arbitrarily close to zero but positive).

These are some of the ingredients of a new, very general FTAP
(and quite simple to prove), in which EMM’s play no rôle whatsoever.
They are replaced by supermartingale numéraires.
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Problem # 7: Enhanced Indexing. Consider a long-only stock
portfolio ρ(·) , which plays the role of a benchmark index. Typical
case is ρ(·) ≡ µ(·) .

We want to construct a long-only stock portfolio π(·) that
minimizes the relative variation (square of the tracking error)

n∑
i=1

n∑
j=1

πi (t)Aρij(t)πj(t)

with respect to ρ(·) , subject to the constraint

γπ(t) ≥ γ

for some given constant γ , namely

n∑
i=1

πi (t) γi (t) +
1

2

 n∑
i=1

πi (t)Aρii (t)−
n∑

i=1

n∑
j=1

πi (t)Aρij(t)πj(t)

 ≥ γ
and of course subject to

π1(t) ≥ 0 , · · · , πn(t) ≥ 0 , π1(t)+. . .+πn(t) = 1 for all t ≥ 0 .
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Now the quadratic term in

n∑
i=1

πi (t) γi (t) +
1

2

 n∑
i=1

πi (t)Aρii (t)−
n∑

i=1

n∑
j=1

πi (t)Aρij(t)πj(t)

 ≥ γ
is just the relative variation (square of the tracking error) we are
trying to minimize.

Rough Approximation: If the tracking error is to be held, as is
usual, to about 2% per year or less, this quadratic term is no more
than 0.02% per year, thus negligible, and we can use the modified
constraint

γπ(t) '
n∑

i=1

πi (t)

(
γi (t) +

1

2
Aρii (t)

)
≥ γ ,

which is linear.

Still, however, we need to estimate the γi (t) ’s ... .
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Problem # 8: Enhanced Large-Cap Indexing. Assume now
that the long-only benchmark portfolio ρ(·) is a large-cap index,
consisting of assets with the same growth rate γi (·) ≡ γ(·) .

We want to construct a long-only stock portfolio π(·) that
minimizes the relative variation (square of the tracking error) with
respect to ρ(·) , namely

(ρ -Tracking Error)2 =
n∑

i=1

n∑
j=1

πi (t)Aρij(t)πj(t) ,

subject to the constraint

γπ(t) ≥ γρ(t) + g , for all t ≥ 0 ,

for some constant g , and subject to

π1(t) ≥ 0 , · · · , πn(t) ≥ 0 , π1(t)+. . .+πn(t) = 1 for all t ≥ 0 .
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Under the assumption of equal growth rates,

γπ(t) ≥ γρ(t) + γ , for all t ≥ 0 ,

becomes
γπ∗ (t) ≥ γρ∗(t) + γ , for all t ≥ 0 .

But from the invariance property we have

2 γπ∗ (t) =
n∑

i=1

πi (t)Aρii (t)−
n∑

i=1

n∑
j=1

πi (t)Aρij(t)πj(t) ,

2 γρ∗(t) =
n∑

i=1

ρi (t)Aρii (t)

and the constraint γπ(t) ≥ γρ(t) + g becomes
n∑

i=1

(πi (t)− ρi (t))Aρii (t)−
n∑

i=1

n∑
j=1

πi (t)Aρij(t)πj(t) ≥ 2 g .

Please note that there is no need any longer to estimate any
growth rates.
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Discussion:

In none of these problems did we need to assume the existence of
an equivalent martingale measure – or even of a deflator Z (·) , in
most of the cases.

In most of them, we needed to “take our model quite seriously”,
to the extent that the solution assumed knowledge of both the
covariation structure of the market and of the assets’ growth rates.
Whereas in some (rather special) such problems, the solution only
needs estimates of the covariation structure of the market – not
a trivial task, but much easier than estimating growth rates of
individual assets.
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FUNCTIONALLY-GENERATED PORTFOLIOS

Let us recall the expression

log

(
V 1,π(T )

V 1,µ(T )

)
=

∫ T

0
γπ∗ (t) dt +

n∑
i=1

∫ T

0
πi (t) d logµi (t)

of (11) for the relative performance of an arbitrary stock portfolio
π(·) with respect to the market.

In conjunction with the dynamics of the log-market-weights

d(logµi (t)) =
(
γi (t)− γµ(t)

)
dt +

N∑
ν=1

(
σiν(t)− σµν (t)

)
dWν(t)

that we have also seen, this leads to the decomposition of the
log-relative-performance for the portfolio π(·) with respect to the
market.
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In general, it is VERY difficult to get any useful information,
regarding the relative performance of a portfolio π(·) with respect
to the market, from this decomposition

d(logµi (t)) =
(
γi (t)− γµ(t)

)
dt +

N∑
ν=1

(
σiν(t)− σµν (t)

)
dWν(t).

HOWEVER: There is a class of very special portfolios π(·) –
described solely in terms of the market weights µ1(·), . . . , µn(·) ,
and nothing else – for which the stochastic integrals disappear
completely from the right-hand side of the above decomposition.
Whereas the remaining (Lebesgue) integrals also depend solely
on market weights, and are monotone increasing.

. This allows for pathwise comparisons of relative performance; or,
to put it a bit differently, for the construction of arbitrage relative
to the market, under appropriate conditions.
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We start with a smooth function S : ∆n
+ → R+ , and consider the

stock portfolio πS(·) generated by it:

πS
i (t)

µi (t)
:= Di log S(µ(t)) + 1−

n∑
j=1

µj(t) · Dj log S(µ(t)) .

(13)
(Blue term: familiar “delta hedging”. The remaining terms on the
RHS are there to ensure the resulting portfolio is fully invested.)

Then an application of Itô’s rule gives the “Master Equation”

log

(
V 1,πS

(T )

V 1,µ(T )

)
= log

(
S(µ(T ))

S(µ(0))

)
+

∫ T

0
g(t) dt . (14)

Here, thanks to our assumptions, the quantity g(·) is nonnegative:

g(t) :=
−1

S(µ(t))

∑
i

∑
j

D2
ijS(µ(t)) · µi (t)µj(t)Aµij (t) . (15)
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πS
i (t) := µi (t)

Di log S(µ(t)) + 1−
n∑

j=1

µj(t) · Dj log S(µ(t))


g(t) :=

−1

S(µ(t))

∑
i

∑
j

D2
ijS(µ(t)) ·

d〈µi , µj〉(t)

µi (t)µj(t)dt

z Please note that, when the smooth function S : ∆n
+ → R+ is

concave, the above process g(·) is non-negative, and thus its
indefinite integral an increasing process.

In this case, it can also be shown that the generated portfolio πS

is long-only.
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Significance: Stochastic integrals have been excised in (14), i.e.,

log

(
V 1,πS

(T )

V 1,µ(T )

)
= log

(
S(µ(T ))

S(µ(0))

)
+

∫ T

0
g(t) dt ,

and we can begin to make comparisons that are valid with
probability one (a.s.)...

Equally significantly: The first term on the right-hand side has
controlled behavior, and is usually bounded. Thus, the growth of
this expression as T increases, is determined by the second
(Lebesgue integral) term on the right-hand side.
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Proof of the “Master Equation” (14): To ease notation we set

hi (t) := Di log S(µ(t)) and N(t) :=
n∑

j=1

µj(t) hj(t) ,

so (13), that is

πi (t) = µi (t)

Di log S(µ(t)) + 1−
n∑

j=1

µj(t) · Dj log S(µ(t))

 ,

reads:

πi (t) =
(
hi (t) + N(t)

)
µi (t) , i = 1, · · · n .
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Then the terms on the right-hand side of

d log

(
V 1,π(t)

V 1,µ(t)

)
=

n∑
i=1

πi (t)

µi (t)
dµi (t)−1

2

 n∑
i=1

n∑
j=1

πi (t)πj(t)Aµij (t)

dt ,

an equivalent version of

log

(
V 1,π(t)

V 1,µ(t)

)
=

∫ T

0
γπ∗ (t) dt +

n∑
i=1

∫ T

0
πi (t) d logµi (t)

in (11), become

n∑
i=1

πi (t)

µi (t)
dµi (t) =

n∑
i=1

hi (t) dµi (t) + N(t) · d
( n∑

i=1

µi (t)
)

=
n∑

i=1

hi (t) dµi (t) ,

67 / 116



whereas
∑n

i=1

∑n
j=1 πi (t)πj(t)Aµij (t) becomes

=
n∑

i=1

n∑
j=1

(
hi (t)+N(t)

)(
hj(t)+N(t)

)
µi (t)µj(t)Aµij (t)

=
n∑

i=1

n∑
j=1

hi (t)hj(t)µi (t)µj(t)Aµij (t) .

(Again, because µ(t) spans the null subspace of {Aµij (t)}1≤i ,j≤n .)
Thus, using the dynamics of market weights in (10), the above
equation gives

d log

(
V π(t)

V µ(t)

)
=

n∑
i=1

hi (t) dµi (t)

− 1

2

n∑
i=1

n∑
j=1

hi (t)hj(t)µi (t)µj(t)Aµij (t) dt . (16)
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On the other hand, we have

D2
ij log S(x) =

(
D2
ijS(x)/S(x)

)
− Di log S(x) · Dj log S(x) ,

so we get

d log S(µ(t)) =
n∑

i=1

hi (t) dµi (t)+
1

2

n∑
i=1

n∑
j=1

D2
ij log S(µ(t))d〈µi , µj〉(t)

=
n∑

i=1

hi (t)dµi (t)

+
1

2

n∑
i=1

n∑
j=1

(D2
ijS(µ(t))

S(µ(t))
−hi (t)hj(t)

)
µi (t)µj(t)Aµij (t)dt

by Itô’s rule. Comparing this last expression with (16) and recalling
the notation of (15), we deduce (14), namely:

d log S(µ(t) = d log (V π(t)/V µ(t))− g(t)dt .
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For instance: PASSIVE INVESTMENTS.

• S(·) ≡ w , a positive constant, generates the market portfolio.

• The function

S(m) = w1m1 + · · ·+ wnmn , m = (m1, · · · ,mn)′ ∈ ∆n
+

generates the passive portfolio that buys at time t = 0,
and holds up until time t = T , a fixed number of shares
wi in each asset i = 1, · · · , n.

(The market portfolio corresponds to the special case

w1 = · · · = wn = w

of equal numbers of shares across assets.)
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• The geometric mean

S(m) ≡ G(m) := (m1 · · ·mn)1/n

generates the equal-weighted portfolio

ϕi (·) ≡ 1/n , i = 1, · · · , n ,

with drift equal to the excess growth rate:

gϕ(·) ≡ γ∗ϕ(·) =
1

2n

 n∑
i=1

αii (·)−
1

n

n∑
i=1

n∑
j=1

αij(·)

 .

The resulting portfolio corresponds to the so-called
“Value-Line Index”.
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Discussion on Equal Weighting:

The equal-weighted portfolio ϕ(·) maintains the same weights in
all stocks at all times; it accomplishes this by selling those stocks
whose price rises relative to the rest, and by buying stocks whose
price falls relative to the others.
. Because of this built-in aspect of “buying-low-and-selling-high”,
equal-weighting can be used as a simple prototype for studying
systematically the performance of statistical arbitrage strategies in
equity markets; see Fernholz & Maguire (2006) for details.

It has been observed empirically, that such a portfolio can
outperform the market (we shall see a rigorous result along these
lines in a short while). Of course, implementing such a strategy
necessitates very frequent trading and can incur substantial
transaction costs for an investor who is not a broker/dealer.
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It can also involve considerable risk: whereas the second term on
the right-hand side of

logV 1,ϕ(T ) =
1

n
log

(
X1(T ) · · ·Xn(T )

X1(0) · · ·Xn(0)

)
+

∫ T

0
γ∗ϕ(t) dt ,

or of

log

(
V 1,ϕ(T )

V 1,µ(T )

)
=

1

n
log

(
µ1(T ) · · ·µn(T )

µ1(0) · · ·µn(0)

)
+

∫ T

0
γ∗ϕ(t) dt ,

is increasing it T , the first terms on the right-hand sides of these
expressions can fluctuate quite a bit.
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• The diversity-weighted portfolio D(p)(·) of

D
(p)
i (t) =

(µi (t))p∑n
j=1(µj(t))p

, i = 1, · · · , n

with 0 < p < 1 , stands between these two extremes, of
. capitalization weighting (as in the S&P 500 Idex), and of
. equal weighting (as in the Value-Line Index).
It is generated by the concave function

S(p)(m) :=
(
mp

1 + · · ·+ mp
n

)1/p
,

and has drift proportional to the excess growth rate:

g(·) ≡ (1− p) γD
(p)

∗ (·) .
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D
(p)
i (t) =

(µi (t))p∑n
j=1(µj(t))p

, i = 1, · · · , n

With p = 0 this becomes equal weighting ϕi (·) ≡ 1/n, 1 ≤ i ≤ n.
With p = 1 we get the market portfolio µ(·) .
Think of it as a way to “interpolate” between the two extremes.

This portfolio over-weighs the small-cap stocks and under-weighs
the large-cap stocks, relative to the market weights.

. It tries to capture some of the “buy-low/sell-high” characteristics
of equal weighting, but without deviating too much from market
capitalizations—and also without incurring a lot of trading costs
or excessive risk.

It can be viewed as an “enhanced market portfolio” or “enhanced
capitalization index”, in this sense.
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• Another way to “interpolate” between the extremes of
equal-weighting and capitalization-weighting, goes as follows.
Consider the geometric mean

G(m) :=
(
m1 · · ·mn

)1/n

and, for any given c ∈ (0,∞), its modification

Gc(m) := c+G(m), which satisfies: c < Gc(m) ≤ c+(1/n) .

This modified geometric mean function generates the
modified equally-weighted portfolio

ϕ
(c)
i (t) =

c

c + G(µ(t))
· 1

n
+

G(µ(t))

c + G(µ(t))
· µi (t) ,

for i = 1, · · · , n that we saw already in (6).
These weights are convex combination of the
equal-weighted and market portfolios; and

gϕ
(c)

(t) =
G(µ(t))

c + G(µ(t))
γ∗ϕ(t) .
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• In a similar spirit, consider the entropy function

H(m) := −
n∑

i=1

mi logmi , m ∈ ∆n
+ .

This entropy function generates the entropic portfolio E(·),
with weights

Ei (t) =
−µi (t) log µi (t)

H(µ(t))
, i = 1, · · · , n

and drift-process

gE(t) =
γ∗µ(t)

H(µ(t))
.
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• Now take again the entropy function

H(m) = −
n∑

i=1

mi logmi , m ∈ ∆n
+

and, for any given c ∈ (0,∞), look at its modification

Sc(m) := c+H(m), which satisfies: c < Sc(m) ≤ c+log n .

This modified entropy function generates the modified
entropic portfolio E(c)(·) of (4), with weights

E
(c)
i (t) =

µi (t)
(
c − logµi (t)

)
c + H(µ(t))

, i = 1, · · · , n

and drift-process given by

gE
(c)

(t) =
γ∗µ(t)

c + H(µ(t))
.
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11. SUFFICIENT INTRINSIC VOLATILITY LEADS TO
ARBITRAGE RELATIVE TO THE MARKET

Principle: Sufficient volatility creates growth opportunities in a
financial market.

We have already encountered an instance of this principle in
section 8: we saw there that, in the presence of a strong
non-degeneracy condition on the market’s covariation structure,
“reasonably diversified” long-only portfolios with constant weights
can represent superior long-term growth opportunities relative to
the overall market.
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We shall examine in Proposition 1 below another instance of this
phenomenon.

More precisely, we shall try again to put the above intuition on a
precise quantitative basis, by identifying the excess growth rate

γµ∗ (t) =
1

2

n∑
i=1

µi (t)Aµii (t)

of the market portfolio – which also measures the market’s
intrinsic volatility – as a driver of growth.
To wit, as a quantity whose “availability” or “sufficiency”
(boundedness away from zero) can lead to opportunities for strong
arbitrage and for superior long-term growth, relative to the market.
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Proposition 1: Assume that over [0,T ] there is “sufficient
intrinsic volatility” (excess growth):∫ T

0
γµ∗ (t)dt ≥ hT , or γµ∗ (t) ≥ h , 0 ≤ t ≤ T

holds a.s., for some constant h > 0 . Take

T > T∗ :=
H(µ(0))

h
, and H(x) := −

n∑
i=1

xi log xi

the entropy function. Then the modified entropic stock portfolio
(from a couple of slides ago)

E
(c)
i (t) :=

µi (t) (c − logµi (t))∑n
j=1 µj(t) (c − logµj(t))

, i = 1, · · · , n

is generated by the function

Hc(m) := c + H(m)

on ∆n
+ ; and for c = c(T ) > 0 sufficiently large, it effects strong

arbitrage relative to the market.
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• Sketch of Argument for Proposition 1: Note that the function
Hc(·) := c + H(·) is bounded both from above and below:

0 < c < Hc(m) ≤ c + log n , m ∈ ∆n
+ .

The master equation now shows that

log

(
V 1,E(c)

(T )

V 1,µ(T )

)
= log

(
c + H(µ(T ))

c + H(µ(0))

)
+

∫ T

0
gE

(c)
(t)dt

is strictly positive, provided

T >
1

h

(
c + log n

)
log
(

1 +
log n

c

)
−→ log n

h

as c →∞ .
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This is because the first term on the right-hand side of

log

(
V 1,E(c)

(T )

V 1,µ(T )

)
= log

(
c + H(µ(T ))

c + H(µ(0))

)
+

∫ T

0
gE

(c)
(t)dt

dominates

− log
( c + log n

c

)
and, under the conditions of the proposition, the second term∫ T

0
gE

(c)
(t)dt = · · · =

∫ T

0

γµ∗ (·)
c + H(·)

dt ≥
∫ T

0

γµ∗ (·)
c + log n

dt

dominates hT / (c + log n) .

To put it a bit differently: if you have a constant wind on your
back, sooner all later you’ll overtake any obstacle – e.g., the
constant log

(
(c + log n)/c

)
.
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This leads to strong relative arbitrage with respect to the market,
for sufficiently large T > log n/h ; indeed to

P
(
V 1,E(c)

(T ) > V 1,µ(T )
)

= 1 .

(Intuition, as before: you can generate such relative arbitrage if
there is “enough intrinsic variation (volatility)” in the market... .)

Major Question (Stayed Open for 10 Years): Is such relative
arbitrage possible over arbitrary time-horizons, under the
conditions of Proposition 1 ?

We shall discuss below two special cases, where the answer to this
question is known – and is affirmative.
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Johannes RUF showed in 2015, with a very interesting
example, that the answer to this question is, in general,
NEGATIVE.

Then a few months later, Bob FERNHOLZ provided a host of
simpler examples, some of them quite amazing.

Johannes and Bob also proved general theorems to the effect that,
under some ADDITIONAL conditions, the answer to the question
does become affirmative. Those theorems cover the special cases
described in Propositions 1 (above) and 2 (below).
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Figure 1: Cumulative Excess Growth
∫ ·

0
γµ∗ (t)dt for the U.S. Stock

Market during the period 1926-1999.
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The previous figure plots the cumulative excess growth
∫ ·

0 γ
∗
µ(t) dt

for the U.S. equities market over most of the twentieth century.
Note the conspicuous bumps in the curve, first in the Great
Depression period in the early 1930s, then again in the “irrational
exuberance” period at the end of the century. The data used for
this chart come from the monthly stock database of the Center for
Research in Securities Prices (CRSP) at the University of Chicago.

The market we construct consists of the stocks traded on the New
York Stock Exchange (NYSE), the American Stock Exchange
(AMEX) and the NASDAQ Stock Market, after the removal of all
REITs, all closed-end funds, and those ADRs not included in the
S&P 500 Index. Until 1962, the CRSP data included only NYSE
stocks. The AMEX stocks were included after July 1962, and the
NASDAQ stocks were included at the beginning of 1973. The
number of stocks in this market varies from a few hundred in 1927
to about 7500 in 2005.

87 / 116



Proposition 2: Introduce the “modified intrinsic volatility”

ζ∗(t) :=
(
µ1(t) · · ·µn(t)

)1/n

 n∑
i=1

αii (t)− 1

n

n∑
i=1

n∑
j=1

αij(t)


and assume that over the given horizon [0,T ] we have a.s.:∫ T

0
ζ∗(t)dt ≥ h T , or ζ∗(t) ≥ h , 0 ≤ t ≤ T

for some constant h > 0 . Then, with m(t) := (µ1(t) · · ·µn(t))1/n

and for sufficiently large c > 0 , the modified equally-weighted
portfolio of (6)

ϕ
(c)
i (t) =

c

c + m(t)
· 1

n
+

m(t)

c + m(t)
· µi (t) , i = 1, · · · , n ,

is arbitrage relative to the market over [0,T ], provided
T > (2n1−(1/n))/h .

The proof is similar to that of Proposition 1. The modified-equal-
weighted stock-portfolio is generated by c + (m1 · · ·mn)1/n , and
we use the “master formula” just as before.
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12. NOTIONS OF MARKET DIVERSITY

Major Question (Was open for 10 Years): Is such relative
arbitrage possible over arbitrary time-horizons, under the
conditions∫ T

0
γµ∗ (t) dt ≥ hT , or γµ∗ (t) ≥ h , 0 ≤ t ≤ T

of Proposition 1 ?

Partial Answer #1: YES, if the variation/covariation matrix
α(·) = σ(·)σ′(·) has all its eigenvalues bounded away from zero
and infinity: to wit, if we have (a.s.)

κ|| ξ||2 ≤ ξ′α(t)ξ ≤ K|| ξ||2 , ∀ t ≥ 0 , ξ ∈ Rd (17)

for suitable constants 0 < κ < K <∞ .
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In this case one can show (Bob Fernholz, Kostas Kardaras)

κ

2

(
1− π(1)(t)

)
≤ γπ∗ (t) ≤ 2K

(
1− π(1)(t)

)
(18)

for the maximal weight of any long-only portfolio π(·) , namely

π(1)(t) := max
1≤i≤n

πi (t) .

Thus, under the structural assumption of (17), i.e.,

κ|| ξ||2 ≤ ξ′α(t)ξ ≤ K|| ξ||2 , ∀ t ≥ 0 , ξ ∈ Rd ,

the “sufficient intrinsic volatility” (a.s.) condition of Proposition 1,
namely
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∫ T

0
γµ∗ (t)dt ≥ hT , or γµ∗ (t) ≥ h , 0 ≤ t ≤ T ,

is equivalent to the (a.s.) requirement of Market Diversity∫ T

0
µ(1)(t)dt ≤ (1− δ)T , or max

0≤t≤T
µ(1)(t) ≤ 1− δ

for some δ ∈ (0, 1) .
(Weak diversity and strong diversity, respectively.)

Remark: The maximal relative capitalization never gets above a certain
percentage. In the S&P 500 universe, no company has ever attained
more than 15% of the total market capitalization; in the last 40 years,
this has been more like 6%.
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Figure 2: Capital Distribution for the S&P 500 Index. December 30, 1997
(solid line), and December 29, 1999 (broken line).
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Proposition 3: Suppose (weak) diversity prevails, and the lowest
eigenvalue of the covariation matrix is bounded away from zero.
For fixed p ∈ (0, 1) , consider the simple “diversity-weighted”
portfolio

D
(p)
i (t) ≡ Di (t) :=

(µi (t))p∑n
j=1(µj(t))p

, ∀ i = 1, . . . , n ,

generated by the concave function

S(p)(m) ≡ S(m) =
(
mp

1 + · · ·+ mp
n

)1/p
.

Then this portfolio leads to arbitrage relative to the market, over
sufficiently long time horizons.
With p = 0 this becomes equal weighting ϕi (·) ≡ 1/n, 1 ≤ i ≤ n.
With p = 1 we get the market portfolio µ(·) .

(Recall in this vein the modified equal-weighted portfolio of (6),
which “interpolates” between equal-weighting and cap-weighting in
a rather different manner.)
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With respect to the market portfolio, this “diversity-weighted”
portfolio

D
(p)
i (t) ≡ Di (t) :=

(µi (t))p∑n
j=1(µj(t))p

, ∀ i = 1, . . . , n ,

de-emphasizes the “upper (big cap) end” of the market, and
over-emphasizes the “lower (small cap) end” – but observes all
relative rankings. It does all this in a completely passive way,
without estimating or optimizing anything.

. Appropriate modifications of this rule generate such arbitrage
over arbitrary time-horizons; for detais, see FKK (2005).

For extensive discussion of the actual performance of this
“diversity-weighted portfolio” as well as of the “pure entropic
portfolio” (with c = 0) we saw before, see Fernholz (2002).
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Proof of Proposition 3: For this “diversity-weighted” portfolio
D(p)(·) we have from the “master equation” (14) the formula

log

(
V 1,D(p)

(T )

V 1,µ(T )

)
= log

(
S(p)(µ(T ))

S(p)(µ(0))

)
+ (1− p)

∫ T

0
γ D(p)

∗ (t)dt .

• First term on RHS tends to be mean-reverting, and is certainly
bounded:

1 =
n∑

j=1

mj ≤
n∑

j=1

(mj)
p =

(
S(p)(m)

)p
≤ n1−p .

Measure of Diversity: minimum occurs when one company is the
entire market, maximum when all companies have equal relative
weights.
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• We remarked already, that the biggest weight of D(p)(·) does
not exceed the largest market weight:

D
(p)
(1)(t) := max

1≤i≤n
D

(p)
i (t) =

(
µ(1)(t)

)p∑n
k=1

(
µ(k)(t)

)p ≤ µ(1)(t) .

By weak diversity over [0,T ], there is a number δ ∈ (0, 1) for
which ∫ T

0

(
1− µ(1)(t)

)
dt > δ T

holds.
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From the strict non-degeneracy of the covariation matrix we have

κ

2

(
1− π(1)(t)

)
≤ γπ∗ (t)

as in (18), and thus:

2

κ

∫ T

0
γ D(p)

∗ (t) dt ≥
∫ T

0

(
1−D(p)

(1)(t)
)
dt ≥

∫ T

0

(
1−µ(1)(t)

)
dt > δT .

• From these two observations we get

log

(
V 1,D(p)

(T )

V 1,µ(T )

)
> (1− p)

[
κT

2
· δ − 1

p
· log n

]
,

so for a time-horizon

T > T∗ := (2 log n)/(pκδ)

sufficiently large, the RHS is strictly positive. �
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Figure 3: Simulation of a diversity-weighted portfolio, 1956–2005.
(1: generating function; 2: drift process; 3: relative return.)

log

(
V 1,D(p)

(T )

V 1,µ(T )

)
= log

(
S(p)(µ(T ))

S(p)(µ(0))

)
+ (1− p)

∫ T

0
γ D(p)

∗ (t)dt .
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Figure 4: Cumulative Change in Market Diversity, 1927-2004. The
mean-reverting character of this quantity is rather apparent.
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• Remark: Consider a market that satisfies the strong
non-degeneracy condition as in (7):

ξ′α(t)ξ = ξ′σ(t)σ′(t)ξ ≥ κ‖ξ‖2 , ∀ t ∈ [0,∞) , ξ ∈ Rn .

If all its stocks i = 1, . . . , n have the same growth-rate
γi (·) ≡ γ(·), then

lim
T→∞

1

T

∫ T

0
γµ∗ (t) dt = 0, a.s.

. In particular, such a market cannot be diverse on long time
horizons: once in a while a single stock dominates such a market,
then recedes; sooner or later another stock takes its place as
absolutely dominant leader; and so on.

. The same can be seen to be true for a market that satisfies the above

strong non-degeneracy condition as in (7) and its assets have constant,

though not necessarily equal, growth rates.
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• Here is a quick argument: from γi (·) ≡ γ(·) and
X (·) = X1(·) + · · ·Xn(·) we have

lim
T→∞

1

T

(
logX (T )−

∫ T

0
γµ(t)dt

)
= 0 ,

lim
T→∞

1

T

(
logXi (T )−

∫ T

0
γ(t)dt

)
= 0

for all 1 ≤ i ≤ n . But then

lim
T→∞

1

T

(
logX(1)(T )−

∫ T

0
γ(t)dt

)
= 0 , holds a.s.

for the biggest stock X(1)(·) := max1≤i≤n Xi (·) , and we note

X(1)(·) ≤ X (·) ≤ n X(1)(·) .
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Therefore, from X(1)(·) ≤ X (·) ≤ n X(1)(·) we deduce

lim
T→∞

1

T

(
logX (T )− logX(1)(T )

)
= 0 , thus

lim
T→∞

1

T

∫ T

0

(
γµ(t)− γ(t)

)
dt = 0 .

But

γµ(t) =
n∑

i=1

µi (t)γ(t) + γµ∗ (t) = γ(t) + γµ∗ (t) ,

because all growth rates are equal. �
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13. STABILIZATION BY VOLATILITY

Major Open Question (Was open for 10 Years): Is such
relative arbitrage possible over arbitrary time-horizons, under
the conditions of Proposition 1 ?∫ T

0
γµ∗ (t)dt ≥ hT , or γµ∗ (t) ≥ h , 0 ≤ t ≤ T .

Partial Answer #2: YES, for the (non-diverse!) so-called
VOLATILITY-STABILIZED model that we broach now.

Consider the abstract market model

d
(

logXi (t)
)

=
α dt

2µi (t)
+

1√
µi (t)

dWi (t)

for i = 1, · · · , n with d = n ≥ 2 and α ≥ 0 .

In other words, we assign the largest volatilities and the largest
log-drifts to the smallest stocks.
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This specification amounts to solving in the positive orthant of Rn

the system of degenerate stochastic differential equations, for
i = 1, · · · , n :

dXi (t) =
1 + α

2

(
X1(t) + · · · + Xn(t)

)
dt

+

√
Xi (t)

(
X1(t) + · · ·+ Xn(t)

)
· dWi (t) .

General theory: Bass & Perkins (TAMS 2002). Shows this
system has a weak solution, unique in distribution, so the model is
well-posed.
Very recent extension of this model in the frameork of Polynomial
Processes, to allow for co-variations among different stocks, has
been carried out by Christa Cuchiero (2017).

Better still: It is possible to describe this solution fairly
explicitly, in terms of Bessel processes.
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• Since we have

αij(t) =
δij
µi (t)

in this model, an elementary computation gives the quantities

γ µ∗ (t) =
1

2

n∑
i=1

µi (t)
(
1− µi (t)

)
αij(t) =

n − 1

2
=: h > 0 ,

aµµ(·) ≡ 1

for the market portfolio µ(·) , and

γ µ(·) ≡ (1 + α)n − 1

2
=: γ > 0 .
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Despite the erratic, widely fluctuating behavior of individual
stocks, the overall market performance is remarkably stable. In
particular, the total market capitalization is

X (t) = X1(t) + . . .+ Xn(t) = x · e γt +B(t) ,

for the scalar Brownian motion

B(t) :=
n∑
ν=1

∫ t

0

√
µν(s) dWν(s) , 0 ≤ t <∞ .

• We call this phenomenon stabilization by volatility: the big
volatility swings for the smallest stocks, together with the smaller
volatility swings for the largest stocks, end up stabilizing the overall
market by producing constant, positive overall growth and variation.

(Note κ = 1 but K =∞, so

κ|| ξ||2 ≤ ξ′α(t)ξ ≤ K|| ξ||2 , ∀ t ≥ 0, ξ ∈ Rd

in (17), slide 85, fails.)
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• The condition γµ∗ (·) ≥ h > 0 of Proposition 1 is satisfied here,
with h = (n − 1)/2 . Thus the model admits arbitrage relative to
the market, at least on time-horizons [0,T ] with

T > T∗ , where T∗ :=
2 H(µ(0))

n − 1
<

2 log n

n − 1
.

The upper estimate (2 log n)/(n − 1) is a rather small number if
n = 5000 as in Wilshire 5000.

• This adds plausibility to the earlier claim, that such outperfor-
mance is possible over all time-horizons. Proved by A.Banner
and D.Fernholz (2008), not just for the volatility-stabililized
model but for quite general growth rates in

d
(

logXi (t)
)

= γi (t)dt +
1√
µi (t)

dWi (t) , i = 1, · · · , n

that such arbitrage is now possible on any given time-horizon.
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• On the other hand, the condition

ζ∗(·) ≥ h > 0

of Proposition 2 (slide 82) is also satisfied here, with h = n − 1 .
This follows from the geometric mean / harmonic mean inequality

ζ∗(t) =
(
µ1(t) · · ·µn(t)

)1/n

 n∑
i=1

αii (t)− 1

n

n∑
i=1

n∑
j=1

αij(t)


=
(
µ1(t) · · ·µn(t)

)1/n ·
n∑

i=1

(
1− 1

n

)
αii (t)

≥ n
1

µ1(t) + · · ·+ 1
µn(t)

· n − 1

n

n∑
i=1

1

µi (t)
= n − 1 .

• What is the long-term-growth behavior of an individual stock?
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A little bit of Stochastic Analysis provides the Representations

Xi (t) =
(
Ri (Λ(t))

)2
, 0 ≤ t <∞ , i = 1, · · · , n

and

X (t) = X1(t) + · · ·+ Xn(t) = x e γt+B(t) =
(
R(Λ(t))

)2
.

Here

4 Λ(t) :=

∫ t

0
X (s) ds = x

∫ t

0
e γs+B(s) ds ,

whereas R1(·), · · · ,Rn(·) are independent Bessel processes in
dimension m := 2(1 + α) , and

R(u) :=

√(
R1(u)

)2
+ · · · +

(
Rn(u)

)2
.
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That is, with Ŵ1(·), · · · , Ŵn(·) independent scalar Brownian
motions, we have

dRi (u) =
m − 1

2Ri (u)
du + dŴi (u) , i = 1, · · · , n .

Finally,

R(u) :=

√(
R1(u)

)2
+ · · · +

(
Rn(u)

)2

is Bessel process in dimension mn.
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We are led to the skew representation (Irina Goia, Soumik Pal)

R2
i (u) = R2(u) · µi

(
4

∫ u

0

dv

R2(v)

)
, 0 ≤ u <∞ .

Here the vector µ(·) =
(
µ1(·), . . . , µn(·)

)
of market-weights

µi (·) =
(
R2

i /R
2
)(

Λ(·)
)

is independent of the Bessel process R(·) ; thus also of the
change-of-clock Λ(·) which is defined in terms of this Bessel
process R(·) via the integral equation

4 Λ(·) =

∫ ·
0

R2 (Λ(t))dt , equivalently Λ−1(·) = 4

∫ ·
0

dv

R2(v)
;

and of the total market capitalization X (·) .
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This vector µ(·) = (µi (·))ni=1 of market-weights is a so-called
vector Jacobi process with values in ∆n

+ and the dynamics

dµi (t) = (1 + α)
(
1− nµi (t)

)
dt +

(
1− µi (t)

)√
µi (t)dβi (t)

−µi (t)
∑
j 6=i

√
µj(t) dβj(t) ,

for i = 1, · · · , n .

Here, β1(·), · · · , βn(·) are independent, standard Brownian
motions.

In particular, the processes µ1(·), · · · , µn(·) have local variations
µi (t)(1− µi (t)) and covariations −µi (t)µj(t) .

112 / 116



This structure suggests that the invariant measure for the
∆n

+−valued diffusion µ(·) = (µi (·))ni=1 of market weights,
is the distribution of the vector(

Q1

Q1 + · · ·+ Qn
, · · · , Qn

Q1 + · · ·+ Qn

)
,

where Q1, · · · , Qn are independent random variables with
common distribution

2−(1+α)

Γ(1 + α)
qα e −q/2 dq , 0 < q <∞ ,

(chi-square with “2(1 + α)-degrees-of-freedom”).
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• From these representations, one obtains the (a.s.) long-term
growth rates of the entire market and of the largest stock

lim
T→∞

1

T
logX (T ) = lim

T→∞

1

T
log

(
max

1≤i≤n
Xi (T )

)
= γ ;

the a.s. long-term growth rates for individual stocks

lim
T→∞

1

T
logXi (T ) = γ , i = 1, · · · , n (19)

for α > 0 ;
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the a.s. long-term stock variations

lim
T→∞

1

T

∫ T

0

dt

µi (t)
=

2 γ

α
= n +

n − 1

α

(for α > 0 , using the Birkhoff ergodic theorem);
that this model is not diverse;
and much more...

NOTE: When α = 0 , the equation

lim
T→∞

1

T
logXi (T ) = γ , i = 1, · · · , n

of (19) holds only in probability; the (a.s.) limit-superior is γ ,
whereas the (a.s.) limit-inferior is −∞ .

Spitzer’s 0-1 law for planar Brownian motion.
Crashes.... Failure of diversity... .
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13.a: Some Concluding Remarks

We have exhibited simple conditions, such as “sufficient level of
intrinsic volatility” and “diversity”, which lead to arbitrages
relative to the market.

These conditions are descriptive as opposed to normative, and
can be tested from the predictable characteristics of the model
posited for the market.

In contrast, familiar assumptions, such as the existence of an
equivalent martingale measure (EMM), are normative in nature,
and cannot be decided on the basis of predictable characteristics in
the model; see example in Karatzas & Kardaras (2007).
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